Compiler Optimizations for Improving Data
Locality

Cache Stuff, ya hear? (also maybe some scheduling things)

2.28.2025

Arjun Bhamra

Contents

0.2 What to get fTom this talKcoouiieiiee ettt 4
1 WHhat’s @ €aChe? WY CATE? ..ottt ettt 5
1.2 Problem: MemoOTy 18 DA ..ottt s 6
1.b Solution: Make small fast MEMOTYc.ccueiiiiiriiiriiiret e 7
1.0 CACKE AELAILS ...ttt 8
1.d What does a compiler consider when optimizing for caches? ... 9
2 S0 there’s thiS COOL PAPETcuiueiiiicircr ettt ettt 10
2.a Compiler Optimizations for Improving Data LOCAlityccccoeeririeniiricininieneineeneiseenerseeeseisesesesseeenne 11
2.b Loop Permutation/INterchange ... 12
2.C LOOP FUSIOI ittt ettt ettt st sttt sttt ettt st s et et bebesentacaeas 14
2.0 LOOP FISSION ..ttt bbbttt ettt bbbt e s 15
2.6 VECTOTIZATION ..oovuviiiiiiiicit bbb bbb b bbb 16
2 THHILE oo s 17
2.8 IMPOTLANLE TIOTE .ottt ettt ettt a bbbttt e e s seneneneas 19
3 Polyhedral LOOP OPLIMEZALION c....cuvieicirieiieicieieie sttt sttt eeaeseeaen 20
3.a What on god’s green earth iS SOINEG 0Ncovuriruiuriririeeicir ettt es st seeens 21

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

Contents (ii)

3.b Examples from the POLLY SHAEScviriiiiieieirier ettt 22
3.C AULOSCREAULIIIE ..ottt ettt et 24
4 TIE EILA .o e 25
4.8 REFEIEIICES ...ttt ettt sttt ettt s s s et b e st e e e e e et an s et e ea s s e b e e ssseseessaetesssantessanens 26

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

What to get from this talk

Goals for this talk:

+ Get a decent understanding of caches/caching, and why it’s needed
+ Going over the titular paper

+ An intro to polyhedral optimization

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

1 What’s a cache? Why care?

Problem: Memory is bad
Specifically, at getting things to us fast

Registers are on the order of 10s of cycles, at most
DRAM is on the order of 100s of cycles (ouch)

How do we fix this?

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

Solution: Make small fast memory

Call it a cache because it costs so much damn money (this is a lie) (also they were originally called buffers
because IBM)

Between CPU and Memory, create intermediary layers that we can access which use faster (but costlier)
technology to retrieve information

CPU

DRAM

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

Cache details

« Caches can be fully associative, N-way set associative, or direct mapped (1-way) (Arjun will draw
diagrams)

« A cache can be specified with C, B, and S values (maybe get into this)

« Caches typically store data in “blocks”, which are rows of bytes (this will be important for later)

+ We read data in at the block level (there are hardware optimizations to access specific words first)

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

What does a compiler consider when optimizing for caches?

Data Locality

The concept of having related data be either physically close by (spatial locality) or be repeatedly
accessed (temporal locality)

Examples:

» Loops

« Array Accesses

« The ability to vectorize instructions (SIMD, etc.)

Can you think of how these exploit locality?

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

2 So there’s this cool paper

Compiler Optimizations for Improving Data Locality
Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. 1994. https://doi.org/10.1145/195470.195557

Discusses a variety of potential optimization angles related to memory accesses, including:

+ Loop Permutation/Interchange

 Loop Fusion and Fission

. Tiling

Their paper goes over a cost model for determining what potential optimizations may be ideal, using
Profile Guided Optimization (PGO)

Fun Note: For some of the above optimizations, knowing cache specifics are required, and PGO can allow
us to “reconstruct” an image of a memory heirarchy given some background information!

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

https://doi.org/10.1145/195470.195557

Loop Permutation/Interchange
Consider the two loop programs below, which one do you think will have better data locality and why?

Column Major: (for each column, go through the row)

int A[DIM1][DIM2];
for (int iter = 0; iter < iters; iter++)
for (int j = 0; j < DIM2; j ++)
for (int i = 0; i < DIM1; i++)
A[L1[]]1++;

Row Major: (vice versa)

int A[DIM1][DIM2];
for (int iter = 0; iter < iters; iter++)
for (int i = 0; 1 < DIM1; i++)
for (int j = 0; j < DIM2; j ++)
A[L][]]1++;

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

Loop Permutation/Interchange (ii)

a2 "

chene fne 2,
3

O N & W | £

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocaLiTy Cache Stuff, ya hear? (also maybe some scheduling things)

Loop Fusion

Reduce duplicate work by combining loops! This improves locality because you are reading in blocks of
data into the cache less times

for (int 1 = 0; i < MAXN; i++)

A[i] += j;
for (int 1 = 0; i < MAXN; i++)
A[i]l *= j;
becomes

for (int i = 0; i < MAXN; i++) {
A[i] += j;
Ali] *= j;

There is an easy optimization to halve loads here, can you find it?

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

Loop Fission

If you have unrelated operations in the same loop (such as distinct array accesses), you can separate these
into separate loops to reduce memory pressure

int A[MAXN][MAXN], B[MAXN][MAXN];
for (int i = 0; i < MAXN; i++) {
for (int j=0; j<MAXN; j+=2) {
A[LT[I] ++;
BIjI[i] ++;

A This is bad.

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

Vectorization

+ Flynn’s Taxonomy (Brief overview)
« Vectorization is using SIMD instructions that have hardware support, instructions that can work across
multiple inputs in parallel.

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

Tiling

When we have specific access patterns that result in more misses than we want, we can sometimes
subdivide our accesses into groupings that match these patterns

1 2 s 1 2 see

A This is bad.

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

Tiling (ii)

" This is good.

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocaLiTy Cache Stuff, ya hear? (also maybe some scheduling things)

Important note

« A lot of these optimizations have examples that can easily be displayed in 2D, but just remember that
they work in higher dimensions as well.

« In fact, for multi-level caches, tiling can be particularly poweful.

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

3 Polyhedral Loop Optimization

What on god’s green earth is going on

+ T underestimated how hard this would be to explain, and so I will be doing the best I can given two (2)
days of research into this

« Polyhedral optimization (aka, using the polytope model) derives its name from convex optimization and
intuition about convex sets, as well as, by natural extension, (integer) linear programming.

The Process:

1. We consider our iteration space as a series of points on an N-dimensional grid (draw this, vaguely)

2. We can then draw a dependency graph based on recurrence relations in our access patterns (what is
dependency? Also, draw this)

3. We apply an affine (linear + const) transformation to our loop structure and schedule

Note: Not all loops are affine, but around 99% of practical looping is
4. We do code generation on our transformed structure, noting its (hopefully new) parallelization
(crucially, this can be done via dependency reduction)

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

Examples from the Polly Slides

S for (i = 1; i <= n; i++) {

_ \\ : Original Code
p—-¢

for (j = 1; j <=1 + m; j++)
A[i1[3]1 = A[i-11[3]1 + A[i]1[j-1]

A[i] [i+m+1] = A[i-1] [i+m] + A[i] [i+m]

} y

. Transformed Code
parfor (p = 1; p <= m+n+l; p++) {
if (p >= m+2)
Alp-m-1][p] = Alp-m-2] [p-1]
for (t = max(p+l, 2%p-m); t <= p+n; t++)
A[-p+t][p] = A[-p+t-1]1[p] + A[-p+t] [p-1]
} y

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

Examples from the Polly Slides (ii)

+ I J I
s2=0 1 1 n

Original Schedules ® Transformed Schedules ®

sp =1 S1 =1 p= J p= i+m+1
s25=0 =1 t=i+j t=2i+m+1
3= J

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

Autoscheduling

Some very cool industry standard tools to check out that do “autoscheduling” of loop structures for a
variety of applications

« Tiramisu: modern polyhedral compiler)
+ Halide: image processing parallelization framework

« Apache TVM: DL framework for lower level optimization and scheduling (closest to today’s talk, in some
sense)

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

4 The End

References

Major credit due to the below Cornell blogpost, which provided a great foundation (and some graphics) for

the presentation, as well as the Polly talk (and slides) for their help with explaining polyhedral/polytope

optimization.

1.
2.
3.

https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/loops/
https://dl.acm.org/doi/pdf/10.1145/195470.195557
https://www.youtube.com/watch?v=Ww{ZkQEuwEE&ab_channel=LLVM (polyhedral talk, has slides in
desc)

4. http://polyhedral.info/

https://www.infosun.fim.uni-passau.de/cl/loopo/doc/loopo_doc/node3.html

. https://www.infosun.fim.uni-passau.de/cl/papers/concur93c.pdf (for the mathematical formalism, which

I do not yet understand)
https://tvm.apache.org/docs//v0.8.0/how_to/optimize_operators/opt_gemm.html
https://halide-lang.org/papers/halide_autoscheduler_2019.pdf

CoMPILER OPTIMIZATIONS FOR IMPROVING DATA LocALiTy Cache Stuff, ya hear? (also maybe some scheduling things)

https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/loops/
https://dl.acm.org/doi/pdf/10.1145/195470.195557
https://www.youtube.com/watch?v=WwfZkQEuwEE&ab_channel=LLVM
http://polyhedral.info/
https://www.infosun.fim.uni-passau.de/cl/loopo/doc/loopo_doc/node3.html
https://www.infosun.fim.uni-passau.de/cl/papers/concur93c.pdf
https://tvm.apache.org/docs//v0.8.0/how_to/optimize_operators/opt_gemm.html
https://halide-lang.org/papers/halide_autoscheduler_2019.pdf

	What to get from this talk
	What's a cache? Why care?
	Problem: Memory is bad
	Solution: Make small fast memory
	Cache details
	What does a compiler consider when optimizing for caches?

	So there's this cool paper
	Compiler Optimizations for Improving Data Locality
	Loop Permutation/Interchange
	Loop Fusion
	Loop Fission
	Vectorization
	Tiling
	Important note

	Polyhedral Loop Optimization
	What on god's green earth is going on
	Examples from the Polly Slides
	Autoscheduling

	The End
	References

